SUBTERRANEAN - Occur below ground surface.

*Subterranean communities are unchanged from the 1990 Guide

Aquatic and Terrestrial Cave

Description: Aquatic and Terrestrial Caves are characterized as cavities below the surface of the ground in karst areas of the state. A cave system may contain portions classified as Terrestrial Caves and portions classified as Aquatic Caves. The latter vary from shallow pools highly susceptible to disturbance, to more stable, totally submerged systems. Because all caves initially develop under aquatic conditions, Terrestrial Caves can be considered essentially dry Aquatic Caves. The limestone aquifers that underlie the entire state of Florida could be considered vast Aquatic Cave communities. Troglobites (also called phreatobites) are organisms specially evolved to survive in deep cave habitats. The occasional observation of various species of troglobites in deep water wells from several regions in the state suggests that this community could be widespread. However, the dependence of troglobites on detrital inputs and other nutrients imported from the surface generally limits the distribution of well developed Aquatic Cave communities to karst areas with surface connections.

The area around cave entrances may be densely vegetated with species from the surrounding Natural Community. Within the cave, however, illumination levels and, thereby, vegetation densities drop rapidly with increased distance from the entrance. Within the limits of light penetration, called the twilight zone, species of algae, mosses, liverworts, and an occasional fern or herbaceous plant may grow. Beyond the twilight zone, plants are generally absent or limited to a few inconspicuous species of fungi that grow on guano or other organic debris. Thus, Subterranean Natural Communities differ from most other Natural Communities in that living plants are not dominant elements.

Animals inhabiting Subterranean Natural Communities are generally divided into three groups according to their cave adaptations: trogloxenes, troglophiles, and troglobites. Trogloxenes spend much of their time in caves, but they must periodically return to the surface to feed or breed. Woodrats, harvestmen, cave crickets, some salamanders, and many species of bats are typical examples of trogloxenes. Troglophiles may regularly live in caves, but their conspecifies also inhabit surface communities with moist microhabitats. Cave orb spiders, and some crickets, fish and salamanders are typical examples of troglophiles. Troglobites are obligatory cave dwellers with special adaptations for living in complete darkness. Blind cave crayfish, blind cave salamander, cave amphipods, cave shrimp, cave snail, and cave isopods are typical troglobites in Florida's Aquatic Caves; cave mites, some cave spiders and springtails, and a cave earwig are typical troglobites in some Terrestrial Caves of north Florida. Even though they never leave their cave environments, troglobites and troglophiles depend on outside energy sources, such as detritus that washes in through sinkholes and other cave entrances. Fecal materials derived from trogloxenes which feed outside the cave are also important nutrients for troglobites. Without these energy subsidies, the troglobitic elements could not exist.

Two geologic processes are predominantly responsible for the development of caves: phreatic and vadose. Phreatic processes occur below the aquifer's surface where ground

water is confined and subjected to hydrostatic pressure. Vadose processes occur at the top of or above the aquifer, where air enters the passageways and water flows freely under the influence of gravity. In both processes, the dissolution and corrosion of limestone play active roles in enlarging cave passageways. These forces differ primarily in the slopes of the passageways which result. Phreatic passageways are generally circular or elliptic, while vadose passageways are more triangular with the broad base of the triangle at the bottom. All limestone caves begin development under phreatic conditions in the aquifer. As water tables drop, vadose conditions eventually replace phreatic conditions. If the water table then rises, another reversal of processes occurs. Because water tables have fluctuated substantially with fluctuating sea levels during the Pleistocene and other geologic epochs, most caves in Florida exhibit both phreatic and vadose characteristics.

Since limestone caves initially develop in the aquifer, they are frequently associated with aquifer-related surface features. Thus, a Spring Run Stream issues from an Aquatic Cave, while Sinkhole Lakes and occasionally Blackwater Streams lead into Aquatic Caves. Similarly, Terrestrial Caves may occur at the bottoms of dry sinkholes or be associated with ancient springs, swallow holes or Aquatic Caves that have since been exposed by lower water tables. Typically, Terrestrial Caves may also exhibit aquatic conditions during periods of heavy rainfall, or vice versa during droughts. Additionally, Terrestrial Caves may harbor relatively permanent pools or lakes that are formed in natural depressions in the floor of the cave from the buildup of rimstone, or where the aquifer inundates the lower cavities. Thus, Terrestrial and Aquatic Caves often occur together.

Cave waters are generally clear, with deep water appearing bluish. The water may become stained brown from tannins leached from decaying plant matter nearby and carried in with rainwater. The water may also become milky white if fine limestone mud from the bottom of the Aquatic Cave is suspended in the water column following disturbance. A bottom substrate of organic silts can also muddy the water with suspended particles. Waters are generally circumneutral to alkaline with a high mineral content (particularly calcium bicarbonate and magnesium) and with constant temperature. Flowing water within Aquatic Caves generally has a lower pH, is often undersaturated with respect to carbonates, and has a relatively richer fauna. Contrastingly, pools that are fed by seepage or dripping water are generally characterized by a high pH, high concentration of dissolved carbonates, low content of organic matter suitable for food, and a sparse fauna. Cave water characteristics may also vary seasonally because of fluvial inputs from interconnected surface streams, or because of detrital pulses and other surface inputs during periods of substantial aquifer recharge. In general, however, Aquatic Caves are very stable environments with relatively constant physical and chemical characteristics.

Terrestrial Caves also are very stable environments, having relatively constant temperatures and humidities. Within the cave, however, these factors may vary with location. For example, the twilight zone (nearest to the light source) is generally warmer and experiences more temperature and humidity fluctuations than does the middle zone, a dark zone that is subject to air circulation due to "cave breathing" phenomena. The deep zone, when it occurs, is the most stable zone of a Terrestrial Cave, because the air in it is essentially static. Terrestrial Cave faunas often partition their distributions according to these zones, with trogloxenes being more common in the twilight and middle zones, and troglobites being more common in the deep zone.

Subterranean Natural Communities are extremely fragile. Their faunas are adapted to very stable environments and have a limited ability to survive even minor environmental perturbations. Terrestrial Caves are threatened by disturbances of spelunkers. The mere entry into a bat roosting, maternity, or hibernation cave is often sufficient to cause abandonment by bats, thereby causing a major reduction in an important energy source for the remainder of the cave ecosystem.

Alterations in or around cave entrances will often upset detrital input levels and may also induce significant changes in air circulation patterns and the cave microclimate. Aquatic Caves are threatened by pollution of ground and surface waters from agricultural, industrial, and residential sources, as well as by disturbances from divers. The unique troglobitic species generally have very low population levels and can be severely impacted by overcollection or by changes in nutrient input levels that result from surface manipulations or hydrological alterations. Thus, special precautions and management procedures must be invoked to protect these unique, fragile communities from deleterious activities.

Global and State Ranks: Aquatic Cave - G3/S3 Terrestrial Cave - G3/S2

Crosswalk and Synonyms: cave, cavern grotto, chamber, chimney, sink, swallow hole, spring rise