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A B S T R A C T   

Terrestrial LiDAR is a promising tool for providing accurate and consistent measurements of forest structure at 
fine scales and has the potential to address some of the drawbacks associated with traditional vegetation 
monitoring methods. To compare terrestrial LiDAR to traditional methods, we conducted vegetation surveys 
using common methods of estimating cover and structure, and scanned surveyed areas using a terrestrial LiDAR 
device, the Leica BLK360. We developed simple methods for using point cloud data to make approximations of 
complex forest structure metrics and compared the ability of both data collection types to predict species rich
ness. Hybrid models accurately predicted total, herb, and shrub richness in southern pine forests using combi
nations of metrics collected from terrestrial LiDAR and traditional field-based sampling methodology. Our 
findings indicate terrestrial LiDAR data may be used to accurately predict species richness in community types 
where structure and richness are related. In addition, our results suggest terrestrial LiDAR technology has the 
potential to address the limitations of traditional methods used to quantify vegetation structure and improve our 
ability for studying forest structure-richness relationships.   

1. Introduction 

One topic at the forefront of current ecological and conservation 
research is the importance of monitoring to protect, promote, and 
manage biodiversity (Di Marco et al., 2016, Lovejoy, 2020). However, 
quantifying plant richness, a critical metric of biodiversity, is often 
limited by the botanical expertise of observers (Dell et al., 2019). To 
overcome some of these challenges, quantifying vegetation structure, 
which is often closely related to potential niche space and species 
richness (Tews et al., 2004), has become the focus of many monitoring 
and restoration programs. Traditional methods to quantify structure 
have focused on simplifying complex three-dimensional structures into 
simple estimations of cover and height. Generally, vegetation is classi
fied by broad functional groups and quantified with ocular estimates 
(Bonham et al., 2004; Braun-Blanquet, 1964, Daubenmire, 1959, Bon
ham, 1989) made within small radial or quadrate plots (Kent and Coker, 
1992). As a result, the inferences made with these data are likely subject 

to bias and lack fine-scale detail, reducing the ability to detect change 
(Floyd and Anderson, 1987, Kennedy and Addison, 1987, Klimeš, 2003, 
Milberg et al., 2008; Vittoz et al., 2010). 

Despite the development of a number of additional methods to 
measure vegetation cover, such as point and line intercept methods, it is 
difficult to conduct repeatable studies with high levels of precision 
because observations are often erroneous and lack consistency (God
inez-Alvarez et al., 2009, Kent and Coker, 1992, Levy and Madden, 
1933). These limitations have consequences for monitoring programs 
and long-term research studies that require repeatable surveys to 
quantify changes in vegetation over time in response to treatment or 
restoration. In more recent years, attempts have been made to address 
some of the drawbacks of traditional methods. For example, North 
Carolina Vegetation Survey (NCVS) plots (Peet et al., 1998), offer a 
highly standardized way of collecting community composition and 
structure data that allow for long-term monitoring of various ecosys
tems. However, conducting NCVS plots or other plots rigorously 
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designed for repeatability requires a significant time investment and for 
surveyors to have the botanical expertise needed for comprehensive 
plant identification. For these reasons, researchers require more objec
tive, repeatable, and practical methods for quantifying vegetation 
composition and structure. 

Terrestrial laser scanning (TLS), also called terrestrial or ground- 
based LiDAR (Loudermilk et al., 2009, Liang et al., 2016), is an 
emerging remote sensing technology with the potential to address the 
challenges associated with traditional forest monitoring techniques 
(Donager et al., 2018). TLS data create a point cloud that reflects the 
features of the scanned landscape in three-dimensions and allows 
extremely fine-scale (mm) measurement of microstructure (Rowell 
et al., 2020, Maguire et al., 2019). The incorporation of TLS into both 
research and monitoring programs has the potential to improve the ef
ficiency of data collection of traditional forest attributes. TLS collects 
vast quantities of fine-scale habitat data in a consistent manner and with 
fewer resources than are required using traditional field methods. Ad
vancements in the technology have also allowed for more portable de
vices which are better suited for field studies in forest conditions. 
However, before TLS can become commonplace in ecological research 
and monitoring, studies are required to determine the effectiveness of 
this technology in quantifying vegetation structure and richness. Our 
study aims to address this need by investigating the potential applica
tions of TLS in forest monitoring programs. We compared the ability of 
TLS derived structure data and plot-based vegetation data to determine 
which method, or combination of methods, best predict species richness 
in pine flatwoods communities. 

2. Methods 

2.1. Study sites 

We conducted plots at Flint Rock Wildlife Management Area 
(FRWMA) and Tyndall Air Force Base (TAFB) in northwestern Florida 
(USA). The vegetation communities at FRWMA and TAFB exemplify the 
typical habitat of many forests along the Gulf Coast of Florida. Both sites 
are a patchy mosaic of wet flatwoods, mesic flatwoods, and wet prairie 
plant communities composed of both natural and planted stands of slash 
pine (Pinus elliottii Engelm.) and longleaf pine (Pinus palustris Mill.). The 
understory vegetation is generally characterized by saw palmetto 
(Serenoa repens (W.Bartram)Small), gallberry (Ilex glabra (L.)A.Gray), 
wiregrass (Aristida stricta Michx.) and other species typical of coastal 
southern pine forests. We sampled at FRWMA in August 2019 and TAFB 
in October 2019. Both visits were made in the late growing season, when 
more reproductive structures would be visible, to improve our ability to 
identify species. 

2.2. Traditional vegetation metrics 

We randomly placed 16 macro plots in flatwoods communities at 
FRWMA and TAFB. Each macro plot was composed of 9, 2.5-m radius 
plots arranged in a 3x3 grid (Fig. 1). To set up a macro plot, we navi
gated to a random point placed in flatwoods communities and used this 
point as the center of a corner plot. We located the remaining plots using 
a compass and measuring tape to ensure plots were evenly spaced. The 
center of each plot was 10 m from the center of the adjacent plots, such 
that each macro plot encompassed a total area of 625 m2. Each plot 
center was permanently marked with ¼” rebar. A 2.5-m radius plot was 
chosen because it encompasses an area (approximate 20 m2) in which it 
is reasonable to estimate the cover of vegetation and not prohibitively 
time-consuming to identify all plant species present (adapted from Saha 
et al., 2011). In total, our study included 144 plots (16 macro plots). In 
each plot, we collected information on vegetation structure by esti
mating basal area, percent cover of canopy, shrubs, palmetto, titi (Cyrilla 
racemiflora L. and Cliftonia monophylla (Lam.)Sarg.), herbs, graminoids, 
pyrogenic graminoids, wiregrass, litter, and bare ground. Basal area was 

estimated from the center of the plot using a 10-factor prism as an index 
of forest structure surrounding the plot. We made ocular estimates of 
percent cover using a modified Daubenmire classification (<1%, 1–5%, 
6–15%, 16–25%, 26–35%, 36–45%, 46–55%, 56–65%, 66–75%, 
76–85%, 86–95%, > 95%) (Daubenmire, 1959). We also made ocular 
estimates of shrub, palmetto, and titi height by determining which of the 
following height classes best characterized the target vegetation: <1 ft, 
1–3 ft, 3–6 ft, or 6–9 ft. Canopy height was estimated visually using the 
following height classes: 6–15 ft, 15–30 ft, 30–45 ft, 45–60 ft, 60–100 ft, 
and > 100 ft. Additional details of how vegetation metrics were 
collected can be found in the supplemental materials. We identified each 
plant rooted in the plot to species and determined the natural commu
nity type of each macro plot according to FNAI (2010). 

2.3. Terrestrial LiDAR using the BLK 360 

We used the BLK360 (Leica Geosystems, Heerbrugg, Switzerland) to 
collect terrestrial LiDAR data. The BLK360 is a compact (height: 165 
mm, diameter: 100 mm), lightweight (1 kg), comparatively affordable 
(~$20,000), splash resistant terrestrial laser scanning system that can be 
mounted on a camera tripod. The scanner emits a series of laser pulses, 
which return to the scanner after bouncing off an object. The position of 
each object is quantified by the timing and strength of the return. 
Collectively, the returns create a three-dimensional (i.e. each point has 
an x, y, and z coordinate) point cloud that represents the topography of 
the scanned landscape. Scans made using the BLK360 capture 360◦

horizontally and 300◦ vertically, are capable of measuring millions of 
points in less than three minutes (360,000 points per second), and can 
capture data with up to 4 mm accuracy at 10 m from the scanner. In 
total, we scanned 77 of the 144 plots in the study. Of the plots scanned, 
29 were at FRWMA and 48 were at TAFB. Plots were not scanned if a plot 
was in standing water or if it was raining during field data collection 
because water can scatter, weaken, and reflect returns, creating data 
anomalies (Chust et al., 2008, Milan et al., 2010). We did not scan plots 
where excessive coarse woody debris was present, such as multiple 
downed trees, because debris would have obstructed the lidar and 
resulted in an incomplete scan of the plot. Macro plots with more than 
one third of the plots under water or blocked by excessive debris were 
shifted a maximum of 25 m. If a 25-m shift of the microplot did not 
enable access to at least two thirds of the plots, it was eliminated from 
our study. We collected TLS data in each plot by placing the scanner on a 
tripod in the center of a plot. We recorded plot ID, time, and date for 

Fig. 1. A schematic of the macro plot design. Each macro plot was composed of 
2.5-m radius plots arranged in a grid. The center of each plot was 10 m from the 
center of the adjacent plots. 
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each scan, so that traditionally measured vegetation data could be 
compared to the corresponding scan data. 

2.4. Analysis 

After exporting the files from the LiDAR scanner, we used Cloud
Compare (version 2.11, GPL), to convert the imported scans to an ascii 
file format. Because the scanner sits above the ground, points in the z- 
plane horizontal to the scanner receive values of zero, while those below 
the scanner receive negative z values. To account for potential vari
ability in scanner height between scans, we corrected the z-plane so that 
the ground is at zero and no points are recorded below zero. To avoid 
overlapping scans, we clipped the point cloud of each plot by excluding 
all points with values of x or y that fell beyond five meters from the 
scanner (Fig. 2). We made a second, more conservative clip, by 
excluding all points that fell beyond 2.5 m from the scanner to assess 
whether additional scan data improved predictions of species richness. 

We binned the remaining points based on their z-coordinate (height) 
to delineate important structural breaks in the forest understory, mid
story, and canopy. We delineated points into the following strata based 
on their z-coordinate: <1 m, 1–3 m, 3–6 m, 6–9 m, 9–12 m, 12–15 m, 
15–18 m, 18–21 m, and > 21 m. We calculated percentage of points 
within each stratum to ensure appropriate scaling for regression and 
increase the interpretability of the findings. We used the mean and 
standard deviation of horizontal distance (x and y) values and vertical 
distance (z) values as an estimate of the openness and variability of the 
plot since returns do not penetrate vegetation. Therefore, stands with a 
larger mean can be interpreted as being more open, and those with 
higher standard deviations can be interpreted as having more hetero
geneous, or highly variable, structure. Additionally, we included the 
maximum values of x and y to represent horizontal openness. We also 
used mean and standard deviation of the intensity of returns in our 
analysis. Intensity is a relative value that measures the strength of each 
return and can be used to detect features in the scan. 

We developed generalized linear models (GLM) using traditional 

field measurements, TLS data, and TLS derived structure data to predict 
species richness. For the purposes of this analysis, we treated each plot 
as independent because our goal was to relate fine scale vegetation 
structure and richness within the plot rather than extrapolating to a 
larger area. Using R (R Core Team, 2019), we ran GLM models with a 
Gaussian distribution and a log link function. We checked our model 
assumptions using the package ‘Performance’ with the ‘check distribu
tion’ and ‘check model’ commands (Lüdecke et al., 2020). The model of 
traditional field measurements was composed of all variables collected 
by field staff using ocular estimates and included the natural community 
type (mesic flatwoods, wet flatwoods, pine plantation, or wet prairie), 
basal area, shrub, palmetto, titi, herb, graminoid, wiregrass, pyrogenic 
graminoid, litter, and bare ground cover, and shrub, palmetto, and titi 
height. The TLS data model was composed of variables derived from 
metrics provided by the scanner (maximum value of x, mean and stan
dard deviation of x, z, and intensity values for each point in the cloud). 
We excluded the y horizontal data in our models as it was correlated to x 
data in all cases. The TLS derived structure model included the percent 
of returns in each stratum as described above. We included a full model 
that was a combination of all three of the above models, for a total of 
four primary models. 

To develop additional hypotheses about factors that predict species 
richness, we used the R package ‘MASS’ (Venables, 2002) to conduct a 
stepwise reduction of each primary model using the ‘stepwise’ function. 
For each primary model the stepwise reduction was performed twice: 
once using ‘forwards/backwards’ selection and once using ‘backwards/ 
forwards’ selection. We compared the two resulting models and retained 
the one with the lowest Akaike Information Criterion (AIC) score as the 
reduced model. We generated a simplified model using this process for 
each of the four primary models. Finally, we created an additional model 
by combining the variables from the reduced traditional, LiDAR, and 
strata models, to see if a combination of the model parameters was su
perior to any of the reduced or full models. To further simplify the 
combined model, we used the same stepwise reduction process to 
develop a reduced model. We evaluated each model for collinear pa
rameters using the ‘Performance’ package’s ‘check collinearity’ tool. If 
parameters were collinear, we excluded the parameter that explained 
less variance. In total, we compared eleven candidate models for each 
TLS clip (2.5- and 5-m radius). Models were compared using the ‘Per
formance’ package by multiple indices of model fit (AIC, Bayesian in
formation criterion, root mean square error, and Bayes factor) and given 
a performance score based on how well they explained the data given all 
the comparison indices. In addition to predicting overall species rich
ness, we repeated this process of creating and comparing models to 
predict herb richness and shrub richness. 

3. Results 

3.1. Evaluation of LiDAR plot size to predict richness 

We compared models made with TLS data clipped to 2.5 and five 
meters to determine whether additional data would better predict spe
cies richness. The models made using the 2.5-m radius TLS clips, which 
identically matched the vegetation plot size, were consistently out
performed by the models containing TLS data clipped to a five-meter 
radius using performance scores. For this reason, we excluded models 
with TLS data clipped to a 2.5-m radius in the final presentation of the 
data. 

3.2. Total richness 

Richness was best predicted by a mix of traditional field measure
ments, LiDAR derived parameters, and the percentage of points in 
different vertical strata. Richness averaged 18.2 ± 6.4 species per plot. 
The best model to predict total richness was the model generated by the 
stepwise reduction of the full model. The standard deviation of z and z 

Fig. 2. An example of a clip from a Terrestrial LiDAR scan point cloud taken 
using the Leica BLK360. The color gradient shown represents the height (Z) of 
returns in meters. 
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mean were highly correlated, so we excluded the standard deviation of z 
from the model because it explained less variance than z mean. The top 
model received a performance score of 96.70% and had the lowest AIC 
and BIC, second lowest RMSE, and the highest BF (Table 1, Fig. 3). The 
model included herb cover, natural community type, palmetto cover, z 
mean, standard deviation of x, maximum value of z, and the percentage 
of points at < 1 m (Table 2). The second-best model to predict total 
richness was the combined and reduced model, which received a per
formance score of 90.14% and contained herb and palmetto cover, 
natural community type, z mean, the percentage of points from 1 to 3 m, 
and the percentage of points from 6 to 9 m (Table 1). 

3.3. Shrub richness 

On average, shrub richness was 9.8 ± 5.6 species per plot. The top 
model received a performance score of 96.45% and had the lowest AIC 
and BIC, second lowest RMSE, and with the highest BF (Table 3, Fig. 4). 
This model contained the z mean and the standard deviation of z, which 
were highly correlated, so we excluded the standard deviation of z from 
the model. The top model included natural community type, the 
maximum value of x, z mean, the percentage of points from 1 to 3 m, and 
the percentage of points from 9 to 12 m (Table 4). The second-best 
model was the combined model, which was less parsimonious than 
the top model and received a performance score of 69.23% (Table 3). 

3.4. Herb richness 

Herb richness averaged 6.7 ± 2.3 species per plot. Similar to total 
richness and shrub richness, the best model to predict herb cover was the 
reduced full model. The top model received a performance score of 
98.22% and had the lowest AIC and BIC, second lowest RMSE, and the 
highest BF (Table 5, Fig. 5). This model contained herb, palmetto, and 
canopy cover, natural community type, the maximum value of z, the 
percentage of points from 6 to 9 m, the percentage of points from 12 to 
15 m, and the percentage of points > 21 m (Table 6). The second-best 
model to predict herb richness only received a performance score of 
66.28% (Table 5). 

4. Discussion 

Richness is a vital biodiversity metric used by managers to evaluate 
habitat quality and the effectiveness of management and restoration 
actions. However, quantifying biodiversity remains a challenge for 
many land managers because of the extensive resources and expertise 
required to make accurate estimates (Dell et al., 2019). Here, we 
demonstrate the potential for TLS to improve the data collection of in
ventory and monitoring programs, and its potential to predict richness, a 
key component of biodiversity estimates. Our findings indicate that 
species richness in southern pine communities is well explained using a 

combination of LiDAR derived parameters and a few key traditional field 
metrics that are easy to collect without significant expertise. Addition
ally, the TLS derived parameters necessary to predict richness in our 
study required minimal post-scan processing, allowing technicians that 
lack both botanical and statistical expertise to make accurate richness 
assessments. These findings may be especially useful when exact 

Table 1 
The performance scores for the models predicting total richness. The best model 
was the stepwise reduced full model (Full Step). The second-best model was 
simplified from the combination of the stepwise reduced traditional, LiDAR, and 
strata models (Combination Step).  

Model AIC BIC RMSE BF Performance Score 

Full step 425.63 451.27 3.44 3.61e11 96.70% 
Combination Step 428.38 451.69 3.55 2.94e11 90.14% 
Combination 434.45 469.42 3.46 4.15e07 62.52% 
Traditional step 441.19 462.17 3.93 1.56e09 59.35% 
Full 449.03 525.95 3.01 0.00 42.12% 
Traditional 457.21 499.17 3.87 14.36 41.84% 
LiDAR step 469.05 478.37 5.02 4.72e05 36.06% 
LiDAR 475.33 500.97 4.78 5.83 28.26% 
Strata step 480.00 493.98 5.26 191.84 25.37% 
Strata 485.86 509.17 5.19 0.10 18.86% 
Null 499.84 504.50 6.32 1.00 7.18%  

Fig. 3. Fitted predictions of the best model to predict total richness, which was 
the stepwise reduced full model (Full Step). The grey shaded area represents the 
95% confidence interval of the model fit. 

Table 2 
The best model to predict total species was the stepwise reduced full model.  

Coefficient Estimate Std. Error t-value p-value 

Intercept 2.79 0.04 63.48 <0.001 
Pine plantation − 0.13 0.07 − 1.80 0.08 
Wet flatwoods 0.27 0.06 4.09 <0.001 
Wet prairie 0.28 0.09 3.05 0.003 
z mean − 0.41 0.09 − 4.61 <0.001 
z maximum 0.04 0.03 1.56 0.12 
x sd 0.12 0.06 1.83 0.07 
Herb cover 0.12 0.03 4.11 <0.001 
Palmetto cover − 0.11 0.04 − 2.51 0.01 
Percentage of points < 1 m − 0.18 0.05 − 3.61 <0.001  

Table 3 
The performance scores for the models predicting shrub richness. The best model 
was the stepwise reduced full model (Full Step). The second-best model was 
simplified from the combination of the stepwise reduced traditional, LiDAR, and 
strata models (Combination Step).  

Model AIC BIC RMSE BF Performance score 

Full step 300.59 321.57 1.55 2.12e06 96.45% 
Combination step 305.09 326.06 1.60 2.24e05 69.23% 
Combination 313.56 348.52 1.56 2.98 57.54% 
Traditional step 317.37 336.02 1.76 1545.43 53.04% 
Traditional 333.70 375.65 1.72 0.00 38.96% 
LiDAR step 329.56 343.54 1.96 35.85 35.65% 
Full 340.06 421.63 1.43 0.00 32.65% 
LiDAR 340.22 365.86 1.96 0.00 29.01% 
Strata step 338.83 350.48 2.10 1.12 27.96% 
Strata 347.60 370.91 2.09 0.00 18.68% 
Null 346.04 350.70 2.30 1.00 18.55%  
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richness numbers are not needed, but instead classes of richness (e.g., 
high, medium, low) would be sufficient to monitor the result of man
agement actions, trends overtime, or to conduct rapid assessments. The 
methods outlined here have great utility for those which seek to rapidly 
assess the effects of management actions and progress toward desired 
future conditions in southeastern pine forests, and perhaps all forests 

where structure and plant richness are strongly related. 
Our models predicted herb richness more accurately than shrub 

richness, which may be a drawback if shrub richness is a primary 
concern. However, if more accurate estimates of shrub richness are 
needed, direct field observations to identify shrubs typically require less 
taxonomic skill than herb or graminoid species. In contrast, herb rich
ness was accurately predicted. Since herb species are generally more 
taxonomically diverse and more challenging to identify than shrubs, we 
believe these findings show promise for expanding the capability of 
many monitoring and research programs to collect biodiversity data. 

Natural community type was retained in the best model for all three 
richness assessments. Site type and history have been shown to be an 
important predictor of species richness in other studies (Christensen and 
Emborg, 1996, Kirkman et al., 2013, Török et al., 2014), which is 
congruent with our finding that natural community type was a signifi
cant predictor in all three models. Pine plantations had a negative effect 
on richness in all three models, further confirming existing knowledge 
that this type of heavily managed habitat is lower in richness than 

Fig. 4. Fitted predictions of the best model to predict shrub richness, which 
was the stepwise reduced full model (Full Step). The grey shaded area repre
sents the 95% confidence interval of the model fit. 

Table 4 
The best model to predict shrub species was the stepwise reduced full model.  

Coefficient Estimate Std. 
Error 

t- 
value 

p-value 

Intercept 0.90 0.56 1.62 0.11 
Pine plantation − 0.16 0.09 − 1.89 0.06 
Wet flatwoods 0.34 0.07 5.13 <0.001 
Wet prairie 0.16 0.13 1.20 0.23 
z mean − 0.24 0.04 − 5.83 <0.001 
x maximum 0.02 0.01 1.62 0.11 
Percentage of points between 1 and 

3 m 
0.16 0.03 5.04 <0.001 

Percentage of points between 9 and 
12 m 

0.05 0.04 1.44 0.15  

Table 5 
The performance scores for the models predicting herb richness. The best model 
was the stepwise reduced full model (Full Step). The second-best model was 
simplified from the combination of the stepwise reduced traditional, LiDAR, and 
strata models (Combination Step).  

Model AIC BIC RMSE BF Performance Score 

Full step 379.00 411.63 2.44 1.63e16 98.22% 
Combination step 393.95 417.26 2.83 9.77e14 66.28% 
Combination 399.68 432.31 2.79 5.25e11 58.65% 
Traditional step 403.15 426.45 3.01 9.84e12 58.18% 
Full 401.01 477.92 2.19 65.57 47.44% 
Traditional 415.32 457.27 2.94 2.00e06 45.43% 
Lidar step 432.02 441.35 3.94 5.75e09 39.34% 
Lidar 434.95 460.59 3.66 3.81e05 34.21% 
Strata step 451.83 461.15 4.49 2.87e05 23.86% 
Strata 456.20 479.51 4.27 29.65 18.26% 
Null 481.63 486.29 5.60 1.00 0.00%  

Fig. 5. Fitted predictions of the best model to predict herb richness, which was 
the stepwise reduced full model (Full Step). The grey shaded area represents the 
95% confidence interval of the model fit. 

Table 6 
The best model to predict herb species was the stepwise reduced full model.  

Coefficient Estimate Std. 
Error 

t- 
value 

p-value 

Intercept 2.10 0.08 27.27 <0.001 
Pine plantation − 0.12 0.09 − 1.28 0.21 
Wet flatwoods 0.20 0.12 1.69 0.10 
Wet prairie 0.44 0.09 4.72 <0.001 
Z mean − 0.30 0.10 − 3.06 0.003 
Z maximum 0.14 0.04 3.68 0.005 
Herb cover 0.19 0.04 4.75 <0.001 
Canopy cover − 0.16 0.06 − 2.61 0.01 
Palm cover − 0.25 0.08 − 3.17 0.002 
Percentage of points between 6 and 9 

m 
0.13 0.04 3.12 0.003 

Percentage of points between 12 and 
15 m 

0.11 0.04 2.74 0.008 

Percentage of points between 15 and 
18 m 

− 0.15 0.08 − 1.75 0.084 

Percentage of points > 21 m 0.10 0.07 1.50 0.14  
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natural forests (Iezzi et al., 2018). 
The mean value of z was retained and had a negative effect on 

richness in all three models. Though one value, z mean presumably re
flects a measure of vertical complexity as it is influenced by the height 
and vertical openness of the forest. Given the positive relationship be
tween canopy gaps and understory cover (De Grandpré et al., 2011), and 
the positive relationship between canopy height and vascular species 
richness (Gatti et al., 2017), the negative effect of z mean on richness 
indicates a lower and denser canopy shades out understory species 
(Moreno et al., 2013). This finding has important implications for 
monitoring programs because height is a highly repeatable and easy to 
obtain metric that can be used to assess vertical complexity across 
multiple forest types. 

Multiple studies have linked stand heterogeneity to richness (Brose, 
2001, Kumar et al., 2006). Even so, the mechanisms driving this rela
tionship are not well understood (Ortega et al., 2018). Presumably, the 
relationship arises because of the increase in microclimates and habitat 
niches available in heterogeneous landscapes (Chessen, 2000). Howev
er, effective and efficient methods to monitor this metric can be elusive 
using traditional methods. In our study, TLS derived parameters repre
senting horizontal complexity were retained in the top total and shrub 
richness models. The standard deviation of x was included in the total 
richness model, which reflects the importance of heterogeneity of the 
shrub layer and forest to species richness. Additionally, the maximum 
value of x was retained in the shrub richness model, which reflects the 
maximum distance returns were able to penetrate the shrub layer and 
forest stand. Though both x metrics were non-significant as individual 
parameters, their retention improved the shrub and overall richness 
models, highlighting their value in explaining richness through hori
zontal structure. Our results not only offer additional support for the link 
between horizontal complexity and richness but suggest that TLS may be 
an effective tool for studying the mechanisms of this relationship. 

Though investigations of the relationships between richness and 
structure using TLS data are extremely limited, aerial laser scanning 
(ALS) data has been used to relate structure to species richness for in
dividual taxa and forest communities (Müller et al., 2010; Carrasco 
et al., 2019, Moeslund et al., 2019). These studies also rely on a com
bination of field collected and ALS derived parameters to best predict 
richness. For example, a study by Thers et al. (2017), used ALS data in 
conjunction with abiotic and biotic factors to predict fungal richness in a 
variety of habitat types. While they were able to predict total fungal 
richness using only ALS derived parameters, the model became a better 
fit when additional abiotic and biotic parameters were included. A 
finding by Lopatin et al. (2015) adds further evidence that models are 
better fit when using a combination of ALS and field collected metrics. In 
that study, vascular plant richness was predicted solely by ALS data, but 
the model had a tendency to overestimate richness when diversity was 
low. The ability to use a combination of ALS and field derived data to 
predict species richness across a diverse array of taxa strengthens our 
confidence that TLS data can be similarly applied to assess biodiversity 
in monitoring and management programs. 

Few studies have been conducted to investigate the correlation be
tween TLS derived structure data and species richness. Early studies of 
the application of TLS in estimating plant species richness used the data 
to estimate traditional forest structure metrics, such as canopy cover or 
herb cover, coupled with additional parameters to predict richness 
(Dormann et al., 2020, Vockenhuber et al., 2011). More recently, Walter 
et al. (2020) found a positive correlation between richness and a TLS 
derived structure parameter representative of forest complexity. How
ever, our study is one of the first to compare multiple combinations of 
field and TLS derived parameters to determine the best predictors of 
richness. 

TLS is a relatively new technology, and there are currently a limited 
number of studies that explore how to process and apply this data in 
ecological studies. Our study demonstrates the value of TLS as a flexible 
and effective method of monitoring forest structure when combined 

with basic traditional field metrics. Using TLS devices, a single indi
vidual can gather the required vegetation structure and LiDAR data of a 
given plot in a just a few minutes. As a result, we believe TLS improves 
the surveying capabilities for many studies, where time and staff 
expertise limit the amount of data collected and area that can be sur
veyed. We predict that some study sites will require larger radius sample 
plots due to the demensions of the forest structure but may still benefit 
from incorporating TLS data by making simple adjustments to the 
methods presented here. However, our approach may not be applicable 
in prairie systems where there is little variation in vertical structure. 
Regardless of methodology, a potential challenge of using TLS is the 
processing necessary to analyze the scan data. However, our method of 
predicting species richness requires minimal processing and simple R 
commands, meets a primary need of many monitoring programs, and 
could be adapted to address other management needs. Despite the po
tential challenges, we believe TLS has outstanding potential to improve 
ecological monitoring programs and warrants further investigation to 
understand its applications. 
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Schall, P., Hartig, F., 2020. Plant species richness increases with light availability, 
but not variability, in temperate understorey. BMC Ecol. 20, 43. 

Floyd, D.A., Anderson, J.E., 1987. A comparison of 3 methods for estimating plant cover. 
J. Ecol. 75, 221–228. 

Gatti, R.C., Di Paola, A., Bombelli, A., Noce, S., Valentini, R., 2017. Exploring the 
relationship between canopy height and terrestrial plant diversity. Plant Ecol. 218, 
899–908. 

Godínez-Alvarez, H., Herrick, J.E., Mattocks, M., Toledo, D., Van Zee, J., 2009. 
Comparison of three vegetation monitoring methods: Their relative utility for 
ecological assessment and monitoring. Ecol. Ind. 9, 1001–1008. 

Iezzi, M.E., Cruz, P., Varela, D., De Angelo, C., Di Bitetti, M.S., 2018. Tree monocultures 
in a biodiversity HotSpot: Impact of pine plantations on mammal and bird 
assemblages in the Atlantic forest. For. Ecol. Manage. 216–227. 

Kennedy, K.A., Addison, P.A., 1987. Some considerations for the use of visual estimates 
of plant cover in biomonitoring. J. Ecol. 75, 151–157. 

Kent, M., Coker, P., 1992. Vegetation description and analysis. Belhaven, London, UK.  
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